Bài tập  /  Bài đang cần trả lời

Câu 8 trang 178 SGK Đại số và giải tích 11

1 Xem trả lời
Hỏi chi tiết
293
0
0
CenaZero♡
12/12/2017 02:07:23
Bài 8. Nêu rõ các bước chứng minh bằng phương pháp quy nạp toán học và cho ví dụ.
Trả lời:
_ Các bước của phương pháp chứng minh quy nạp:
+ B1: Chứng minh bài toán đúng với \(n = 1\)
+ B2: Giả thuyết bài toán đúng với \(n = k\)  (gọi là giả thiết quy nạp)
+ B3. Chứng minh bài toán đúng v4ới \(n = k + 1\)
Khi đó kết luận bài toán đúng với mọi \(n\in {\mathbb N}^*\)
_ Ví dụ: Chứng minh rằng: với mọi \(n\in {\mathbb N}^*\) ta có:
 \({1^2} + {2^2} + {3^2} + ... + {n^2} = {{n(n + 1)(2n + 1)} \over 6}(1)\)
Giải
_ Khi \(n = 1\) thì (1) trở thành \({1^2} = {{1(1 + 1)(2 + 1)} \over 6}\) đúng.
_ Giả sử (1) đúng khi \(n = k\), tức là:
 \({1^2} + {2^2} + {3^2} + .... + {k^2} = {{k(k + 1)(2k + 1)} \over 6}\)
_ Ta chứng minh (1) đúng khi \(n = k + 1\), tức là phải chứng minh:
 \({1^2} + {2^2} + {3^2} + .... + {(k + 1)^2} = {{(k + 1)(k + 2)(2k + 3)} \over 6}\)
_ Thật vậy :
\(\eqalign{
& {1^2} + {2^2} + {3^2} + .... + {k^2} + {(k + 1)^2} \cr
& = {{k(k + 1)(2k + 1)} \over 6} + {(k + 1)^2} = {{(k + 1)k(2k + 1) + 6(k + 1)} \over 6} \cr
& = {{(k + 1)(2{k^2} + 7k + 6)} \over 6} = {{(k + 1)(k + 2)(2k + 3)} \over 6} \cr} \)
Vậy (1) đúng khi \(n = k + 1\).
Kết luận: (1) đúng với \(n\in {\mathbb N}^*\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×