Cho đường tròn O và một điểm A sao cho OA = 3R. Qua A kẻ hai tiếp tuyến AP và AQ của đường tròn (O), với P và Q là hai tiếp điểm. Lấy M thuộc đường tròn (O) sao cho PM song song với AQ. Gọi N là giao điểm thứ hai của đường thẳng AM và đường tròn (O). Tia PN cắt đường thẳng AQ tại K.
1. Chứng minh tứ giác APOQ nội tiếp
2. Chứng minh KA^2 = KN.KP
3. Kẻ đường kính QS của đường tròn (O). Chứng minh tia NS là phân giác của góc PNM
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |