Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). H là trực tâm của tam giác ABC. Từ B kẻ đường thẳng song song với HC. Từ C kẻ đường thẳng song song với HB. Hai đường thẳng này cắt nhau tại D. Hãy chứng minh:
1. Tứ giác ABDC nội tiếp và AD là đường kính của đường tròn (O;R)
2. BAH^ = CAO^
a. Gọi E là giao điểm của BC và HD; G là giao điểm của AE và OH. Chứng minh: G là trọng tâm của tam giác ABC.
b. Cho ABC ^= 600. Tính diện tích hình quạt tròn COD (ứng với cung nhỏ CD).
4. Nếu OH song song với BC thì tanB.tanC = 3 với B, C là hai góc của tam giác ABC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: Điểm K đối xứng với điểm F qua AC => FC=KC; AF=AK
=> ΔΔACF=ΔΔACK (c.c.c) => ^AFC=^AKC (2 góc tương ứng)
Ta thấy tứ giác ABFC nội tiếp đường tròn tâm O => ^AFC=^ABC.
H là trực tâm của tam giác ABC => CH⊥⊥AB (tại D)
=> ^HCB + ^ABC = 900 (1)
Lại có AH⊥⊥BC => ^LHC + ^HCB = 900 (2)
Từ (1) và (2) => ^ABC=^LHC. Mà ^LHC + ^AHC = 1800
=> ^ABC + ^AHC = 1800. Do ^ABC=^AFC=^AKC (cmt) => ^AKC + ^AHC= 1800
Xét tứ giác AHCK có: ^AKC + ^AHC =1800 => Tứ giác AHCK nội tiếp đường tròn (đpcm).
b) AO cắt GI tại Q
Gọi giao điểm của AO và (O) là P = >^ACP=900 => ^CAP+^CPA=900 (*)
Thấy tứ giác ACPB nội tiếp đường tròn (O) => ^CPA=^ABC
Mà ^ABC+^AHC=1800 => ^CPA+^AHC=1800 (3).
Ta có tứ giác AHCK là tứ giác nội tiếp (cmt) => ^KAI=^CHI
Lại có ΔΔACF=ΔΔACK => ^FAC=^KAC hay ^KAI=^GAI => ^GAI=^CHI
Xét tứ giác AHGI: ^GAI=^GHI (=^CHI) (cmt) = >Tứ giác AHGI nội tiếp đường tròn
=> ^AIG+^AHG=1800 hay ^AIG + ^AHC=1800 (4)
Từ (3) và (4) => ^AIG=^CPA (**)
Từ (*) và (**) => ^CAP+^AIG=900 hay ^IAQ+^AIQ=900 => ΔΔAIQ vuông tại Q
Vậy AO vuông góc với GI (đpcm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |