Cho tam giác ABC nhọn có góc BAC = 45độ và các đường cao AD, BE, CF có trực tâm H. a. Chứng minh rằng AH = BC b. Gọi I là trung điểm của BC. Tính góc FIE
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giải thích các bước giải:
a) Ta có:
Do CH là đường cao của tam giác ABC nên CH vuông góc với AB mà theo giả thiết thì BK cũng vuông góc với AB nên suy ra CH song song với BK.
Tương tự chứng minh trên ta cũng có: BH song song với CK
Tứ giác BHCK có : BH song song CK và CH song song BK nên tứ giác BHCK là hình bình hành.
b) Theo kết quả của phần A ta có:
BHCK là hình bình hành có 2 đường chéo BC và HK ⇒ BC và HK cắt nhau tại trung điểm mỗi đường (Tính chất của hình bình hành) mà M là trung điểm BC suy ra M là trung điểm HK ⇒ H,M,K thẳng hàng.
Xét tam giác AHK có: M là trung điểm HK, I là trung điểm AK
⇒ MI là đường trung bình của tam giác AHK
⇒ MI song song với AH và MI=1/2 AH.
mik ko biết đúng hay ko nữa
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |