Cho tam giác ABC có góc A = 90. Trên AC lấy điểm M sao cho AM<MC. Vẽ đường tròn tâm O đường kính CM; đường thẳng BM cắt(O) tại D; kéo dài cắt (O) tại S
a.Chứng minh BACD nội tiếp
b. BC cắt (O) tại E. Chứng minh rằng : ME là phân giác của góc AED
c. Chứng minh CA là phân giác của góc BCS
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1. Ta có ÐCAB = 900 ( vì tam giác ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) => ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn đường kính BC => ABCD là tứ giác nội tiếp.
2. ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |