Bài 1: Chứng minh rằng:Trong 1 tứ giác ABCD thì 2 lần đường chéo nhỏ hơn chu vi của tứ giác (2.AC<AB+BC+CD+DA)
Bài 2: Chứng minh rằng:Trong 1 tứ giác tổng đường chéo lớn hơn tổng 2 cạnh đối (AC+BD>BC+AD)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt độ dài AB = a, BC = b, CD = c, AD = d
Gọi O là giao điểm hai đường chéo AC và BD
Trong ∆OAB, ta có:
OA + OA > a (bất đẳng thức tam giác) (1)
Trong ∆OCD ta có:
Từ (1) và (2) suy ra:
OA + OB + OC + OD > a + c
Hay AC + BD > a + c (*)
-Trong ∆OAD ta có: OA + OD > d (bất đẳng thức tam giác) (3)
-Trong ∆OBC ta có: OB + OC > b (bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra: OA + OD + OB + OC > b + d
⇒ AC + BD > b + d (**)
Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d
⇒AC+BD>a+b+c+d2⇒AC+BD>a+b+c+d2
-Trong ∆ABC ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)
-Trong ∆ADC ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)
Suy ra: 2AC < a + b + c + d
AC<a+b+c+d2AC<a+b+c+d2 (5)
-Trong ∆ABD ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)
-Trong ∆BCD ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)
Suy ra: 2BD < a + b + c + d
BD<a+b+c+d2BD<a+b+c+d2 (6)
Từ (5) và (6) suy ra: AC + BD < a + b + c + d
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |