Bài tập  /  Bài đang cần trả lời

Chứng minh rằng: Trong 1 tứ giác ABCD thì 2 lần đường chéo nhỏ hơn chu vi của tứ giác (2.AC nhỏ hơn AB+BC+CD+DA). Chứng minh rằng: Trong 1 tứ giác tổng đường chéo lớn hơn tổng 2 cạnh đối (AC+BD lớn hơn BC+AD)

Bài 1: Chứng minh rằng:Trong 1 tứ giác ABCD thì 2 lần đường chéo nhỏ hơn chu vi của tứ giác (2.AC<AB+BC+CD+DA)
Bài 2: Chứng minh rằng:Trong 1 tứ giác tổng đường chéo lớn hơn tổng 2 cạnh đối (AC+BD>BC+AD)

1 trả lời
Hỏi chi tiết
294
2
0
Macchiato
23/07/2021 08:43:45
+5đ tặng

Đặt độ dài AB = a, BC = b, CD = c, AD = d

Gọi O là giao điểm hai đường chéo AC và BD

Trong ∆OAB, ta có:

OA + OA > a (bất đẳng thức tam giác)          (1)

Trong ∆OCD ta có:

Từ (1) và (2) suy ra:

OA + OB + OC + OD > a + c

Hay AC + BD > a + c  (*)

-Trong ∆OAD ta có: OA + OD > d (bất đẳng thức tam giác) (3)

 

-Trong ∆OBC ta có: OB + OC > b (bất đẳng thức tam giác) (4)

Từ (3) và (4) suy ra: OA + OD + OB + OC > b + d

⇒ AC + BD > b + d (**)

Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d

⇒AC+BD>a+b+c+d2⇒AC+BD>a+b+c+d2

-Trong ∆ABC ta có: AC < AB + BC =  a + b (bất đẳng thức tam giác)

-Trong ∆ADC ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)

Suy ra: 2AC < a + b + c + d

AC<a+b+c+d2AC<a+b+c+d2   (5)

-Trong ∆ABD ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)

-Trong ∆BCD ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)

Suy ra: 2BD < a + b + c + d

BD<a+b+c+d2BD<a+b+c+d2   (6)

Từ (5) và (6) suy ra: AC + BD < a + b + c + d

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k