Cho nửa đường tròn tâm (O) đường kính BC và điểm A trên nửa đường tròn (O) ( A khác B,C). Hạ AH vuông góc với BC (H thuộc BC) . I,K lần lượt đối xứng với H qua AB, AC. Đường thẳng IK và tia AC cắt tiếp tuyến kẻ từ B của (O) lần lượt tại M,N. Gọi E là giao điểm của IH và AB, F là giao điểm KH và AC.
a) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O )
b) Chứng minh:
1/ (BH)^2= 1/ (AB)^2 + 1/( AN)^2
c) Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
d) Xác định vị trí điểm A trên nửa đường tròn để diện tích tứ giác BIKC lớn nhất
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |