Bài tập  /  Bài đang cần trả lời

Chứng minh AB là phân giác của góc CAE

1 Xem trả lời
Hỏi chi tiết
567
2
0
Tú Uyên
30/08/2021 19:45:44
+5đ tặng
a,Xét tam giác EBA và tam giác CBA, có:
EB=CB (do B là trung điểm của CE)
EBA=CBA(=90)
AB: chung
Do đó tam giác EBA và tam giác CBA (c.g.c)
=> EAB=CAB (hai góc tương ứng)
Mà EAB+CAB=CAE
=> AB là tia phân giác của CAE.
b)Gọi I là điểm giao nhau giữa MN và AB.
Xét tam giác HNA và tam giác HMA, có:
HNA=HMA (=90 độ)
AH: chung
CAB=EAB(cm ở câu a)
Do đó tam giác HNA và tam giác HMA (ch-gn)
=> AN=AM (hai cạnh tương ứng)
=> tam giác MAN cân tại A.
Mặt khác ta lại có: MAI=NAI (do AB là tia phân giác của góc CAE)
=> AI là đường trung trực của tam giác cân MAN.
Ta có: EC vuông góc AB (gt)
MN vuông góc với AB (cmt)
Do đó suy ra MN//CE.
c) Vì tam giác HNC vuông tại N nên HN (cạnh góc vuông ) bé hơn HC (cạnh huyền)
Mà HN=HM (do tam giác HNA=tam giác HMA)
=>HC > HM

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×