Bài 4. Cho tam giác ABC vuông tại A vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a. Chứng minh ΔAHC = ΔDHC.
b. Cho BC = 10cm; AB = 6cm. Tính độ dài cạnh AC
c. Trên HC lấy điểm E sao cho HE = HB. Chứng minh ΔAHB = ΔDHE và DE vuông góc với AC
d. Chứng minh AE + CD > BC
Chứng minh ΔAHC = ΔDHC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, Xét t/g AHC và t/g DHC có:
AH = DH (gt)
góc AHC = góc DHC = 90 độ
HC chung
=> t/g AHC = t/g DHC (c.g.c) (đpcm)
b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82
=> AC = 8 (cm)
c, Xét t/g AHB và t/g DHE có:
AH = DH (gt)
góc AHB = góc DHE (đối đỉnh)
BH = EH (gt)
=> t/g AHB = t/g DHE (c.g.c) (đpcm)
=> góc HBA = góc DEH (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // DE
Mà AB _|_ AC
=> DE _|_ AC (đpcm)
d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)
Xét t/g AHB và t/g AHE có:
BH = BE (gt)
góc AHB = góc AHE = 90 độ
AH chung
=> t/g AHB = t/g AHE (c.g.c)
=> AB = AE (2 cạnh tương ứng) (2)
Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)
Từ (1),(2),(3) => AE + CD > BC (đpcm)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |