Bài tập  /  Bài đang cần trả lời

Cho hình bình hành ABCD có góc A = 120 độ. Tia phân giác góc D đi qua trung điểm I của cạnh AB, kẻ AH vuông góc với DC. a) Chứng minh: AB = 2 AD; b) Chứng minh: DI = 2 AH

3 trả lời
Hỏi chi tiết
534
1
2
Bngann
06/09/2021 11:30:32
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
1
Nguyễn Nguyễn
06/09/2021 11:32:24
+4đ tặng

a) Vì ABCD là hình bình hành có góc A = 120 độ

=> góc D = 180 độ - góc A = 180 độ - 120 độ = 60 độ.

DI là tia phân giác của góc D nên góc ADI = góc IDC = 30 độ.

Xét tam giác ADI ta có:

góc A + góc ADI + góc AID = 180 độ

=> góc AID = 180 độ - 120 độ - 30 độ = 30 độ

=> góc AID = góc ADI = 30 độ.

=> tam giác ADI là tam giác cân tại A.

=> AD = AI = 1/2 AB (đpcm).

b) Kẻ IK vuông góc với DC tại K.

Khi đó ta có tứ giác AIKH là hình chữ nhật (tức giác có 3 góc vuông).

=> IK = AH.

Xét tam giác IDK vuông tại K có góc IDK = 30 độ.

=> IK = 1/2DI (tam giác vuông có cạnh đối diện với góc 30 độ = nửa cạnh huyền)

=> AH = 1/2 ID <=> ID = 2 AH.

c) Xét tam giác BIC ta có:

BI = BC =AD (=1/2AB) (cm a))

=> tam giác BIC là tam giác cân tại B.

Lại có góc ABC = 60 độ = góc ADC.

=> tam giác BIC là tam giác đều.

=> IC=IB=1/2AB

=> tam giác ABC là tam giác vuông tại C. (tam giác có đường trung tuyến IC = 1/2 cạnh BC)

=> góc ACB = 90 độ hay AC vuông góc với BC.

Mà BC // AD

=> AC vuông góc với AD. (từ song song đến vuông góc) (đpcm).

1
0

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư