Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của AB. Trên tia đối của tia MH lấy điểm D sao cho MD = MH.
a) Chứng minh rằng tứ giác AHBD là hình chữ nhật.
b) Gọi E là điểm đối xứng của điểm B qua điểm H. Chứng minh tứ giác ADHE là hình bình hành.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb).
Lại có ˆHA=90° nên AHBD là hình chữ nhật (dhnb).
b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.
Lại có HB = HE nên AD song song và bằng HE.
Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |