Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 11 trang 7 Sách bài tập Toán 9 Tập 2: Dựa vào vị trí tương đối giữa hai đường thẳng dưới đây, hãy tìm mối liên hệ giữa các hằng số a, b, c và các hằng số a’, b’, c’ để hệ phương trình
a. Có nghiệm duy nhất
b. Vô nghiệm
c. Có vô số nghiệm
Áp dụng:
a. Lập một hệ hai phương trình bậc nhất hai ẩn có nghiệm duy nhất.
b. Lập một hệ hai phương trình bậc nhất hai ẩn vô nghiệm.
c. Lập một hệ hai phương trình bậc nhất hai ẩn có vô số nghiệm.
Lời giải:
Xét các trường hợp:
1. a, b, a’, b’ ≠ 0
Ta có:
a. Hệ phương trình có một nghiệm duy nhất khi hai đường thẳng cắt nhau. Nghĩa là hai đường thẳng có hệ số góc khác nhau:
b. Hệ phương trình vô nghiệm khi hai đường thẳng song song nhau. Nghĩa là hai đường thẳng có hệ số góc bằng nhau và tung độ gốc khác nhau:
c. Hệ phương trình có vô số nghiệm khi hai đường thẳng trùng nhau. Nghĩa là hai đường thẳng có hệ số góc và tung độ gốc bằng nhau:
*a = 0, a’ ≠ 0
Vì hai đường thẳng luôn luôn cắt trục hoành còn đường thẳng y = c/b song song hoặc trùng với trục hoành nên chúng luôn luôn cắt nhau.
Vậy hệ phương trình chỉ có một nghiệm duy nhất.
*a = a’ = 0
Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:
Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:
*b = 0, b’ ≠ 0
Vì hai đường thẳng luôn luôn cắt trục tung còn đường thẳng x = c/a song song hoặc trùng với trục tung nên chúng luôn luôn cắt nhau.
Vậy hệ phương trình chỉ có một nghiệm duy nhất.
*b = b’ = 0
Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:
Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:
Áp dụng:
a. Hệ hai phương trình bậc nhất hai ẩn có nghiệm duy nhất:
b. Hệ hai phương trình bậc nhất hai ẩn vô nghiệm:
c. Hệ hai phương trình bậc nhất hai ẩn có vô số nghiệm:
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |