Bài 13. Áp dụng quy tắc đổi dấu rồi rút gọn phân thức:
a)\({{45x\left( {3 - x} \right)} \over {15x{{\left( {x - 3} \right)}^3}}}\)
b)\({{{y^2} - {x^2}} \over {{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}}\)
Giải
a)\({{45x\left( {3 - x} \right)} \over {15x{{\left( {x - 3} \right)}^3}}} = {{3\left( {3 - x} \right)} \over {{{\left( {x - 3} \right)}^3}}} = {{ - 3\left( {x - 3} \right)} \over {{{\left( {x - 3} \right)}^3}}} = {{ - 3} \over {{{\left( {x - 3} \right)}^2}}}\)
b)\({{{y^2} - {x^2}} \over {{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}} = {{\left( {y + x} \right)\left( {y - x} \right)} \over {{{\left( {x - y} \right)}^3}}} = {{ - \left( {x + y} \right)\left( {x-y} \right)} \over {{{\left( {x - y} \right)}^3}}} = {{ - \left( {x + y} \right)} \over {{{\left( {x - y} \right)}^2}}}\)