Bài tập  /  Bài đang cần trả lời

Bài 2 trang 30 sách sgk giải tích 12

1 Xem trả lời
Hỏi chi tiết
391
0
0
Nguyễn Thu Hiền
12/12/2017 01:57:45
Bài 2. Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số:
a) \(y=\frac{2-x}{9-x^2}\)
b) \(y=\frac{x^2+x+1}{3-2x-5x^2}\)
c) \(y=\frac{x^2-3x+2}{x+1}\)
d) \(y=\frac{\sqrt {x}+1}{\sqrt {x}-1}\)
Giải:
a)
\(\mathop {\lim }\limits_{x\rightarrow (-3)^-}\frac{2-x}{9-x^2}=+\infty\); \(\mathop {\lim }\limits_{x\rightarrow (-3)^+}\frac{2-x}{9-x^2}=+\infty\) nên đường thẳng \(x=-3\) là tiệm cận đứng của đồ thị hàm số.
 \(\mathop {\lim }\limits_{x\rightarrow 3^-}\frac{2-x}{9-x^2}=-\infty\); \(\mathop {\lim }\limits_{x\rightarrow 3^+}\frac{2-x}{9-x^2}=-\infty\) nên đường thẳng \(x=3\) là tiệm cận đứng của đồ thị hàm số.
 \(\mathop {\lim }\limits_{x\rightarrow +\infty }\frac{2-x}{9-x^2}=0\); \(\mathop {\lim }\limits_{x\rightarrow -\infty }\frac{2-x}{9-x^2}=0\)  nên đường thẳng: \(y = 0\) là tiệm cận ngang của đồ thị hàm số.
b)
\(\begin{array}{l} \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{{x^2} + x + 1}}} = + \infty ;\,\,\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{{x^2} + x + 1}}} = - \infty \\ \mathop {\lim }\limits_{x \to {{\left( {\frac{3}{5}} \right)}^ + }} \frac{{{x^2} + x + 1}}} = - \infty ;\,\,\mathop {\lim }\limits_{x \to {{\left( {\frac{3}{5}} \right)}^ - }} \frac{{{x^2} + x + 1}}} = + \infty \end{array}\)
Nên đồ thị hàm số có hai tiệm cận đứng là các đường thẳng: \(x=-1;x=\frac{3}{5}\).
Vì: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + x + 1}}} = - \frac{1}{5};\,\,\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + x + 1}}} = - \frac{1}{5}\)
Nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y=-\frac{1}{5}\).
c)
\(\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \frac{{{x^2} - 3x + 2}} = - \infty ;\,\mathop {\lim }\limits_{x \to {{( - 1)}^ +}} \frac{{{x^2} - 3x + 2}} = + \infty\) nên đường thẳng \(x=-1\) là một tiệm cận đứng của đồ thị hàm số.
 \(\underset{x\rightarrow -\infty }{\lim}\frac{x^{2}-3x+2}{x+1}=\underset{x\rightarrow -\infty }{\lim}\frac{x^2(1-\frac{3}{x}+\frac{2}{x^{2}})}{x(1+\frac{1}{x})}=-\infty\) và \(\underset{x\rightarrow -\infty }{\lim}\frac{x^{2}-3x+2}{x+1}=+\infty\) nên đồ thị hàm số không có tiệm cận ngang.
d)
Hàm số xác định khi:  \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-1\neq 0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1 \end{matrix}\right.\)
Vì  \(\mathop {\lim }\limits_{x\rightarrow 1^-}\frac{\sqrt{x}+1}{\sqrt{x}-1}=-\infty\)( hoặc \(\mathop {\lim }\limits_{x\rightarrow 1^+}\frac{\sqrt{x}+1}{\sqrt{x}-1}=+\infty\) ) nên đường thẳng \(x = 1\) là một tiệm cận đứng của đồ thị hàm số.
Vì  \(\mathop {\lim }\limits_{x\rightarrow +\infty }\frac{\sqrt{x}+1}{\sqrt{x}-1}=\mathop {\lim }\limits_{x\rightarrow +\infty }\frac{\sqrt{x}(1+\frac{1}{\sqrt{x}})}{\sqrt{x}(1-\frac{1}{\sqrt{x}})}=1\) nên đường thẳng \(y = 1\) là một tiệm cận ngang của đồ thị hàm số.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×