Bài tập  /  Bài đang cần trả lời

Bài 3 trang 80 sgk hình học 10

1 trả lời
Hỏi chi tiết
977
0
0
Nguyễn Thị Thương
12/12/2017 00:42:04
Bài 3.Cho tam giác \(ABC\), biết \(A(1; 4), B(3; -1)\) và \(C(6; 2)\)
a) Lập phương trình tổng quát của các đường thẳng \(AB, BC\), và \(CA\)
b) Lập phương trinh tham số của đường thẳng \(AH\) và phương trình tổng quát của trung tuyến \(AM\)
Giải
a) Ta có \(\vec{AB} = (2; -5)\). Gọi \(M(x; y)\) là \(1\) điểm nằm trên đường thẳng \(AB\) thì \(AM = (x - 1; y - 4)\). Ba điểm \(A, B, M\) thẳng hàng nên hai vec tơ \(\vec{AB}\) và \(\vec{AM}\) cùng phương, cho ta:
\(\frac{x - 1}{2}\) = \(\frac{y - 4}{-5}\Leftrightarrow  5x + 2y -13 = 0\)
Đó chính là phương trình đường thẳng \(AB\).
Tương tự ta có:
phương trình đường thẳng \(BC: x - y -4 = 0\)
phương trình đường thẳng \(CA: 2x + 5y -22 = 0\)
b) Đường cao \(AH\) là đường thẳng đi qua \(A(1; 4)\) và vuông góc với \(BC\).
\(\vec{BC} = (3; 3)\) \(\Rightarrow \vec{AH}  ⊥ \vec{BC}\) nên \(\vec{AH}\) nhận vectơ  \(\vec{n} = (3; 3)\) làm vectơ pháp tuyến và có phương trình tổng quát:
\(AH : 3(x - 1) + 3(y -4) = 0\)
\(\Leftrightarrow 3x + 3y - 15 = 0\)
\(\Leftrightarrow x + y - 5 = 0\)
Gọi \(M\) là trung điểm \(BC\) ta có \(M (\frac{9}{2}; \frac{1}{2})\)
Trung tuyến \(AM\) là đường thẳng đi qua hai điểm \(A, M\). 
\(AM: = \Leftrightarrow x + y - 5 = 0\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư