LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Bài 3 trang 92 SGK Hình học 12

1 trả lời
Hỏi chi tiết
511
0
0
CenaZero♡
12/12/2017 02:16:09
Bài 3. Trong hệ toạ độ \(Oxyz\), cho bốn điểm \(A(-2 ; 6 ; 3), B(1 ; 0 ; 6), C(0; 2 ; -1), D(1 ; 4 ; 0)\).
a) Viết phương trình mặt phẳng \((BCD)\). Suy ra \(ABCD\) là một tứ diện.
b) Tính chiều cao \(AH\) của tứ diện \(ABCD\).
c) Viết phương trình mặt phẳng \((α)\) chứa \(AB\) và song song với \(CD\).
Giải
a) Ta có: \(\overrightarrow {BC} = (-1; 2; -7)\),  \(\overrightarrow {BD}= (0; 4; -6)\)
Xét vectơ \(\overrightarrow a  = \left[ {\overrightarrow {BC}, \overrightarrow {BD} } \right]\)    \( \Rightarrow \overrightarrow a  = (16; - 6; - 4) = 2(8; - 3; - 2)\)
Mặt phẳng \((BCD)\) đi qua \(B\) và nhận \(\overrightarrow {a'}  = (8; -3; -2)\) làm vectơ pháp tuyến nên có phương trình:
\(8(x - 1) -3y - 2(z - 6) = 0\) \( \Leftrightarrow  8x - 3y - 2z + 4 = 0\)
Thay toạ độ của \(A\) vào phương trình của \((BC)\) ta có:
\(8.(-2) - 3.6 - 2.6 + 4 = -42 ≠ 0\)
Điều này chứng tỏ điểm \(A\) không thuộc mặt phẳng \((BCD)\) hay bốn điểm \(A, B, C, D\) không đồng phẳng, và \(ABCD\) là một tứ diện.
b) Chiều cao \(AH\) là khoảng cách từ \(A\) đến mặt phẳng \((BCD)\):
\(AH = d(A,(BCD))\) = \({{\left| {8.( - 2) - 3.6 - 2.3 + 4} \right|} \over {\sqrt {{8^2} + {{( - 3)}^2} + {{( - 2)}^2}} }} = {{36} \over {\sqrt {77} }}\)
c) Ta có: \(\overrightarrow {AB}  = (3; - 6; 3)\), \(\overrightarrow {CD}  = ( 1; 2; 1)\)
Mặt phẳng \((α)\) chứa \(AB\) và \(CD\) chính là mặt phẳng đi qua \(A(-2; 6; 3)\) và nhận cặp vectơ \(\overrightarrow {AB} \), \(\overrightarrow {CD} \) làm cặp vectơ chỉ phương, có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {AB}, \overrightarrow {CD} } \right]\)
\(\Rightarrow \overrightarrow n \) = \((-12; 0; 12) = -12(1; 0; -1)\)
Vậy phương trình của \((α)\) là:
\(1(x + 2) + 0(y - 6) - 1(z - 3) = 0 \)\( \Leftrightarrow x - z + 5 = 0\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư