Bài tập  /  Bài đang cần trả lời

Bài 35 trang 129 sgk toán lớp 8 tập 1

1 Xem trả lời
Hỏi chi tiết
788
0
0
Nguyễn Thanh Thảo
12/12/2017 02:07:12
Bài 35. Tính diện tích hình thoi có cạnh dài 6cm và một trong các góc của nó có số đo là \(60^{\circ}\)
Hướng dẫn giải:
Cho hình thoi ABCD có cạnh AB = 6cm, \(\widehat{A}\) = \(60^{\circ}\)

Khi đó ∆ABC là tam giác đều. Từ B vẽ BH \(\perp\) AD thì HA = HD. Nên tam giác vuông AHB là nửa tam giác đều, BH là đường cao tam giác đều cạnh 6cm, BH = \(\frac{6\sqrt{3}}{2}\) = 3√ 3 (cm) 
Nên SABCD = BH. AD = 3√ 3. 6 = 18√ 3 (cm2)
Cách khác:
∆ABD là tam giác đều nên BD = AB = 6cm, AI là đường cao tam giác nên AI = \(\frac{6\sqrt{3}}{2}\) = 3√ 3 (cm) \(\Rightarrow\) AC = 6√ 3 (cm)
Nên SBCD = \(\frac{1}{2}\) BD. AC = \(\frac{1}{2}\) 6. 6√ 3 = 18√ 3 (cm2)
Cách tính độ dài đường cao BH:
Theo định lí Pitago, tam giác vuông ABH có:
BH2 = AB2 – AH2 = AB2 - \(\left ( \frac{AB}{2} \right )^{2}\)
                             = AB2 - \(\frac{AB^{2}}{4}\) = \(\frac{3AB^{2}}{4}\).
Nên BH = \(\frac{AB.\sqrt{3}}2{}\) = \(\frac{6\sqrt{3}}2{}\) = 3√ 3 (cm)
Tổng quát: Đường cao tam giác đều cạnh a có độ dài là: ha = \(\frac{a\sqrt{3}}2{}\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×