Bài tập  /  Bài đang cần trả lời

Bài 5 trang 50 SGK Hình học 12

1 Xem trả lời
Hỏi chi tiết
553
0
0
Nguyễn Thị Sen
12/12/2017 00:42:12
Bài 5. Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(H\) là hình chiếu vuông góc của đỉnh \(A\) xuống mặt phẳng \((BCD)\).
a) Chứng minh \(H\) là tâm đường tròn ngoại tiếp tam giác \(BCD\). Tính độ dài đoạn \(AH\).
b) Tính diện tích xung quanh và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác \(BCD\) và chiều cao \(AH\).
Giải

a) Ta biết rằng tứ diện đều là tứ diện có \(6\) cạnh đều bằng nhau.
Vì \(AB = AC = AD\) và \(AH \bot (BCD)\) nên có \(HB = HC = HD\).
Vậy \(H\) là tâm đường tròn ngoại tiếp tam giác đều \(BCD\).
Ta có \(BH = {2 \over 3}BI = {{a\sqrt 3 } \over 3}\);
Do tam giác \(ABH\) vuông tại \(H\) nên : \(A{H^2} = A{B^2} - B{H^2}={a^2} - {{{a^2}} \over 3} = {2 \over 3}{a^2}\) .
Vậy \(AH = {{\sqrt 6 } \over 3}a\)
b) Vì tam giác \(BCD\) đều cạnh \(a\), nên bán kính đường tròn ngoại tiếp tam giác là \(R = BH = {{a\sqrt 3 } \over 3}\) . Vì vậy diện tích xung quanh của hình trụ là:
\(S = 2\pi Rh = 2\pi {{a\sqrt 3 } \over 3}.{{\sqrt 6 } \over 3}a = {{2\sqrt 2 } \over 3}\pi {a^2}\) (đtdt).
Thể tích khối trụ là: \(V = \pi {R^2}h = \pi {{{a^2}} \over 3}.{{\sqrt 6 } \over 3}a = {{\sqrt 6 } \over 9}\pi {a^3}\) (đtdt)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×