Bài tập  /  Bài đang cần trả lời

Bài 52 trang 58 sgk toán 8 tập 1

1 Xem trả lời
Hỏi chi tiết
500
1
0
Phạm Minh Trí
12/12/2017 01:04:07
Chứng tỏ rằng với (a là một số nguyên), giá trị của biểu thức
 \(\left( {a - {{{x^2} + {a^2}} \over {x + a}}} \right).\left( {{{2a} \over x} - {{4a} \over {x - a}}} \right)\)  là một số chẵn.
Hướng dẫn làm bài:
Điều kiện của biến để giá trị của biểu thức được xác định là :\(x \ne 0,x \ne  \pm a\) ( a là một số nguyên)
Ta có :\(\left( {a - {{{x^2} + {a^2}} \over {x + a}}} \right).\left( {{{2a} \over x} - {{4a} \over {x - a}}} \right) = \over {x + a}}.\)
\( = {{x\left( {a - x} \right)2a\left( { - a - x} \right)} \over {x\left( {a + a} \right)\left( {x - a} \right)}} = 2a\)
Vì a là số nguyên nên 2a là số chẵn.
Vậy giá trị của biểu thức đã cho là một số chẵn.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×