Bài tập  /  Bài đang cần trả lời

Bài 6 trang 169 sách giáo khoa Đại số và Giải tích 11

1 Xem trả lời
Hỏi chi tiết
872
0
0
Tô Hương Liên
12/12/2017 00:48:24
Bài 6. Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc \(x\):
a) \(\sin^6x + \cos^6x + 3\sin^2x.\cos^2x\);
b) \({\cos ^2}\left ( \frac{\pi }{3}-x \right )+ {\cos ^2} \left ( \frac{\pi }{3}+x \right ) +  {\cos ^2}\left ( \frac{2\pi }{3}-x \right )\) \(+{\cos ^2}  \left ( \frac{2\pi }{3}+x \right )-2\sin^2x\).
Lời giải:
a) Ta có:
\(y' = 6{\sin ^5}x.\cos x - 6{\cos ^5}x.\sin x + 6\sin x.\cos^3x -  6{\sin ^3}x.\cos x\)
\(= 6{\sin ^3}x.\cos x(\sin^2 x - 1) + 6\sin x.\cos^3 x(1 - {\cos ^2}x)\)
\(=  - 6{\sin ^3}x.\cos^3 x + 6{\sin ^3}x.\cos^3 x = 0\).
Vậy \(y' = 0\) với mọi \(x\), tức là \(y'\) không phụ thuộc vào \(x\).
 b)
\(y =

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×