Cho góc xOy. Hai điểm A, B lần lượt nằm trên hai cạnh Ox, Oy.
a) Hãy tìm điểm M cách đều hai cạnh của góc xOy và cách đều hai điểm A, B.
b) Nếu OA = OB thì có bao nhieu điểm M thỏa mãn các điều kiện trong câu a?
Hướng dẫn làm bài: a) Vì M cách đều hai cạnh Ox, Oy của \(\widehat {xOy}\) nên M phải thuộc tia phân giác \(\widehat {xOy}\).
Vì M cách đều hai điểm A và B nên M thuộc đường trung trực của AB. Vậy M là giao điểm của tia phân giác \(\widehat {xOy}\) và đường trung trực của đoạn thẳng AB.
b) Nếu OA = OB thì ∆AOB cân tại O nên tia phân giác \(\widehat {xOy}\) cũng là trung trực của AB nên mọi điểm trên tia phân giác \(\widehat {xOy}\) sẽ cách đều hai cạnh Ox, Oy và cách đều hai điểm A và B.
Vậy khi OA = OB thì mọi điểm trên tia phân giác \(\widehat {xOy}\) đều thỏa mãn các điều kiện ở câu a.