Bài tập  /  Bài đang cần trả lời

Bài 63 trang 87 sgk toán 7 tập 2

1 trả lời
Hỏi chi tiết
654
0
0
Tôi yêu Việt Nam
12/12/2017 00:39:13
Cho tam giác ABC với AC < AB. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Vẽ các đoạn thẳng AD, AE.
a) Hãy so sánh góc ADC và góc AEB.
b) Hãy so sánh các đoạn thẳng AD và AE.
Hướng dẫn làm bài:

Trong  ∆ABC, ta có AB > AC (gt) ⇒ \(\widehat {ACB} > \widehat {ABC}\)    (1)
Từ (1) suy ra được: \(\widehat {AC{\rm{E}}} < \widehat {AB{\rm{D}}}\)  (hai góc kề bù) (2)
- Trong tam giác cân ACE, ta có:
\(\widehat {AC{\rm{E}}} = \widehat {E{\rm{A}}C}\) và \(\widehat {A{\rm{E}}C} + \widehat {E{\rm{A}}C} + \widehat {AC{\rm{E}}} = {180^0}\)
hay \(\widehat {AC{\rm{E}}} = 2\widehat {A{\rm{E}}C} = {180^0} \Rightarrow \widehat {A{\rm{E}}C} = {{{{180}^0} - \widehat {AC{\rm{E}}}} \over 2}\)    (3)
- Tương tự, trong tam giác cân ABD, ta có:
\(\widehat {A{\rm{D}}B} = {{{{180}^0} - \widehat {AB{\rm{D}}}} \over 2}\)      (4)
- Mà \(\widehat {AC{\rm{E}}} < \widehat {AB{\rm{D}}}\)    (do (2))
Từ  (2), (3), (4) suy ra: \({{{{180}^0} - \widehat {AC{\rm{E}}}} \over 2} > {{{{180}^0} - \widehat {AB{\rm{D}}}} \over 2}\)
suy ra \(\widehat {A{\rm{E}}C} > \widehat {A{\rm{D}}B}\) hay \(\widehat {A{\rm{E}}B} > \widehat {A{\rm{D}}C}\) (đpcm)
b) Xét ∆AED, ta có: \(\widehat {A{\rm{E}}B} > \widehat {A{\rm{D}}C}\) . Suy ra AD > AE

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 7 mới nhất
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k