Bài 5. Diện tích hình phẳng giới hạn bởi các đường cong
a) y = \(x^3\) và \(y = x^5\) bằng:
A. 0 B. -4 C. \({1 \over 6}\) D. 2
b) \(y = x + sinx\) và \(y = x\) (0 ≤ x ≤ 2π)
A. -4 B. 4 C. 0 D. 1
Trả lời:
a) Phương trình hoành độ giao điểm của hai đường thẳng đã cho là:
\( x^5= x^3⇔ x = 0\) hoặc \(x = ±1\)
Do đó: Diện tích hình phẳng cần tìm là:
\(\eqalign{
& S = \left| {\int_{ - 1}^0 {({x^3} - {x^5})dx} } \right| + \left| {\int_0^1 {({x^3} - {x^5})dx} } \right| = \left| {\left[ {{{{x^4}} \over 4} - {{{x^6}} \over 6}} \right]} \right|\left| {_{ - 1}^0} \right. + \left| {\left[ {{{{x^4}} \over 4} - {{{x^6}} \over 6}} \right]} \right|\left| {_{ - 1}^0} \right. \cr
& = \left| { - {1 \over 4} + {1 \over 6}} \right| + \left| \right| = {1 \over 6} \cr} \)
Chọn đáp án C
b) Phương trình hoành độ giao điểm của hai đường thẳng là:
\(x + sinx = x\) (\(0 ≠ x ≠ 2x\))\( ⇔ sinx = 0 ⇔ x = 0; x = π; x = 2π\)
Do đó, diện tích hình bằng là:
\(\eqalign{
& S = \left| {\int_0^\pi {\sin {\rm{x}}dx} } \right| + \left| {\int_\pi ^{2\pi } {\sin {\rm{x}}dx} } \right| \cr
& = \left| {\left[ { - \cos } \right]\left| {_0^\pi } \right.} \right| + \left| {\left[ { - {\mathop{\rm cosx}\nolimits} } \right]\left| {_\pi ^{2\pi }} \right.} \right| = 2 + 2 = 4 \cr} \)
Chọn đáp án B