Bài tập  /  Bài đang cần trả lời

Câu 7 trang 122 SGK Hình học 11

1 Xem trả lời
Hỏi chi tiết
1.034
1
0
Nguyễn Thị Thảo Vân
12/12/2017 00:26:15
Bài 7. Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) cạnh \(a\), góc \(\widehat {BAD} = 60^0\) và \(SA = SB = SD = {{a\sqrt 3 } \over 2}\)
a) Tính khoảng cách từ \(S\)  đến mặt phẳng \((ABCD)\) và độ dài cạnh \(SC\)
b) Chứng minh mặt phẳng \((SAC)\) vuông góc với mặt phẳng \((ABCD)\)
c) Chứng minh \(SB\) vuông góc với \(BC\)
d) Gọi \(\varphi\) là góc giữa hai mặt phẳng \((SBD)\) và \((ABCD)\). Tính \(\tan\varphi\)
Trả lời:
a) Kẻ \(SH⊥(ABCD)\)
Do \(SA = SB = SD\) suy ra \(HA = HB = HC\)
\(⇒ H\) là tâm đường tròn ngoại tiếp tam giác \( ABD\).
Do \(AB = AD = a\) và \(\widehat{ BAD} = 60^0\) nên tam giác \(ABD\) là tam giác đều cạnh \(a\),
Ta có: 
\(\eqalign{
& AO = {{a\sqrt 3 } \over 2} \cr
& AH = {2 \over 3}AO \Rightarrow AH = {{a\sqrt 3 } \over 3} \cr} \)
 Trong tam giác vuông \(SAH\), ta có: \(SA = {{a\sqrt 3 } \over 2};AH = {{a\sqrt 3 } \over 3}\)
Tính ra: \(SH = {{a\sqrt {15} } \over 6}\)
Ta cũng có: \(HC = {{2a\sqrt 3 } \over 3}\)
Trong tam giác vuông \(SHC\):
\(S{C^2} = S{H^2} + H{C^2}\)      
Do đó ta tính được:
 \(SC = {{a\sqrt 7 } \over 2}\)
 
b) 
\(\left. \matrix{
SH \bot (ABCD) \hfill \cr
SH \subset (SAC) \hfill \cr} \right\} \Rightarrow (SAC) \bot (ABCD)\)
c) Ta có:
\(\eqalign{
& S{C^2} = {{7{a^2}} \over 4}(1) \cr
& B{C^2} = {a^2}(2) \cr
& S{B^2} = {{3{a^2}} \over 4}(3) \cr} \)
Từ (1), (2) và (3) ta có: \(S{C^2} = B{C^2} + S{B^2}\)
Theo định lí Pytago đảo, tam giác \(SBC\) vuông tại \(B\).
d) Ta có:
\(\eqalign{
& \left. \matrix{
DB \bot AC \hfill \cr
SH \bot (ABCD) \Rightarrow SH \bot DB \hfill \cr} \right\} \Rightarrow DB \bot (SAC) \cr
& \Rightarrow \left\{ \matrix{
DB \bot {\rm{OS}} \hfill \cr
{\rm{DB}} \bot AC \hfill \cr} \right. \cr} \)
Suy ra: \(\widehat{ SOH}\) là góc giữa hai mặt phẳng \((SBD)\) và \((ABCD)\)
Ta có:
\(\eqalign{
& \widehat{ SOH} = \varphi \cr
& \tan \varphi = {{SH} \over {OH}} \Rightarrow \tan \varphi = \sqrt 5 \cr} \)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×