Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BM và CM. Chứng minh AH vuông góc với BC

Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BM và CM
1/ chứng minh AHvuông góc với bc
2/ gọi E là trung điểm AH . chứng minh ME là tiếp tuyến của đường tròn trong O
3/ cm MN x Oe =2ME x OM
4/ giả sử AH=BC.tính tangBAC
5 Xem trả lời
Hỏi chi tiết
38.314
52
23
Su
18/11/2017 06:23:58
1. ta có tam giác MBC nội tiếp đường tròn tâm O đường kính BC nên là tam giác vuông tại M CM vuông với AB ta có tam giác NBC nội tiếp đường tròn tâm O đường kính BC nên là tam giác vuông tại N BN vuông góc với AC H là giao điểm hai đường cao của tam giác ABC nên H là trực tâm của tam giác ABC => AH vuông góc với BC (đpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
31
25
NoName.267263
25/05/2018 09:13:23
4) Giả sử AH = BC. Tính tang BAC.
ΔBNC và ΔANH vuông ở N có BC = AH và NBC = NAH (cùng phụ góc ACB)
ΔBNC = ΔANH (cạnh huyền, góc nhọn)
17
18
12
22
ako tamaki
14/12/2018 16:27:10
=> MN.OE=ME.MO+NE.NO
Ta co ME=NE (cmt)
MO=NO (cmt)
=> MN.OE=ME.MO+ME.MO
=>MN.OE=2ME.MO
55
16
Vũ Việt Chinh
17/12/2018 20:04:39
1) Chứng minh AH ┴ BC .
Vì ΔBMC và ΔBNC nội tiếp đường tròn (O) đường kính BC
Suy ra BMC = BNC = 90*. Do đó: Tam giác ABC có hai đường cao BN , CM cắt nhau tại H
nên H là trực tâm tam giác. Vậy AH ┴ BC.
2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O)
OB = OM (bk đường tròn (O)) nên ΔBOM cân ở M.
Do đó: ^OMB = ^OBM (1)
ΔAMH vuông ở M , E là trung điểm AH nên AE = HE = AH/2 Vậy ΔAME cân ở E.
Do đó: ^AME = ^MAE (2)
Từ (1) và (2) suy ra: OMB + AME = MBO + MAH. Mà MBO + MAH = 90* (vì AH ┴ BC )
Nên OMB + AME = 90*. Do đó ^EMO = 90*. Tức là ME┴OE Vậy ME là tiếp tuyến của đường tròn (O).
3) Chứng minh MN. OE = 2ME. MO
OM = ON và EM = EN nên OE là đường trung trực MN.
Do đó OE ┴ MN tại K và MK = MN/2
ΔEMO vuông ở M , MK ┴ OE nên ME. MO = MK . OE = MN/2.OE.
Suy ra: MN. OE = 2ME. MO.
Nope
Giải bài hay

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×