a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB = AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB = HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)
b/ Ta có :HB = HC( cmt)
=> H trung điểm BC
Ta có: HB = HC = BC/2 = 8/2 = 4 (cm)
Xét tam giác ABH vuông tại H
Có AB^2 = AH^2 + HB^2 (pytago)
=>AH^2 = AB^2 - HB^2
AH^2 = 5^2 - 4^2
AH^2 = 25 - 16
AH^2 = 9
AH = căn 9
=> AH = 3cm
Vậy AH = 3cm
c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)
Có: AH chung
Góc DAH = góc EAH ( tam giác ABH = tam giác ACH)
=> tam giác ADH = tam giác AEH ( cạnh huyền - góc nhọn)
=> AD = AE ( 2 cạnh tương ứng)
=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)
Xét tam giác ABC cân tại A(gt)
Có: Góc B = (180 độ - góc A)/2 (định lí)
Xét tam giác ADE cân tại A (cmt)
Có: Góc D = (180 độ - góc A)/2 (định lí)
=> Góc B = Góc D ( =(180 độ - góc A)/2)
=> DE//BC ( 2 góc đồng vị bằng nhau)