Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 3: Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác
Bài 17 (trang 63 SGK Toán 7 tập 2): Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC.
a) So sánh MA với MI + IA, từ đó chứng minh MA + MB < IB + IA.
b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB.
c) Chứng minh bất đẳng thức MA + MB < CA + CB.
Lời giải:
a) Trong ΔAMI ta có: MA < MI + IA
Cộng MB vào hai vế ta được:
MA + MB < MB + MI + IA
Vì MB + MI = IB nên MA + MB < IB + IA (1) (đpcm)
b) Trong ΔBIC ta có: IB < IC + CB
Cộng IA vào hai vế ta được:
IB + IA < IA + IC + CB
Vì IA + IC = CA nên IB + IA < CA + CB (2) (đpcm)
c) Từ (1) và (2) và theo tính chất bắc cầu ta suy ra:
MA + MB < CA + CB (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |