Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 32 (trang 68 sgk Hình học 11 nâng cao): Cho hai đường thẳng chéo nhau a và b lần lượt nằm trên hai mặt phẳng song song (P) và (Q). Chứng minh rằng nếu điểm M không nằm trên (P) và không nằm trên (Q) thì duy nhất một đường thẳng đi qua M cắt cả a và b
Lời giải:
Giả sử c = mp(M, a) ∩ mp(M, b). Ta cần chứng minh c cắt cả a và b. Vì c và a cùng nằm trên một mặt phẳng và không thể trùng nhau (do c qua M và a không đi qua M) nên hoặc c // a hoặc c cắt b. Cũng vậy hoặc c // b hoặc c cắt b. Không thể xảy ra đồng thời c // a, c // b vì a, b chéo nhau. Vậy nếu c song song với a thì c phải cắt b , tức là c qua một điểm của mp(Q), và do đó M thuộc (Q) (trái giả thiết). Tương tự, không thể có c song song với b. Tóm lại c phải cắt a và b
Nếu còn có đường thẳng c’ khác đi qua M, cắt cả a và b thì a và b đồng phẳng. Vô lí
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |