b)
Cotx - 1 = [ cos2x / (1 + tanx) ] + sin²x - (1/2). sin2x (*)
ĐKXĐ: { sinx ≠ 0
{ cosx ≠ 0 => sin2x ≠ 0
=> x ≠ π/2 + kπ (k ∈ Z)
PT (*)
<=> cosx/sinx - 1 = [ cos2x.cosx / (sinx + cosx) ] + sin²x - sinxcosx
<=> cosx(sinx + cosx) - sinx(sinx + cosx) = cos2x.sinxcosx + sin³x(sinx + cosx) - sin²xcosx(sinx + cosx)
<=> sinxcosx + cos²x - sin²x - sinxcosx = cos2x.sinxcosx + sin²x(sin²x + sinxcosx - sinxcosx - cos²x)
<=> cos²x - sin²x = cos2x.sinxcosx + sin²x(sin²x - cos²x)
<=> cos2x = cos2x.sinxcosx - cos2x.sin²x
<=> cos2x(1 + sin²x - sinxcosx) = 0
<=> { cos2x = 0
{ 1 + sin²x - sinxcosx = 0
+) cos2x = 0 <=> x = π/4 + Iπ/2 (l є Z) : thỏa mãn điều kiện
+) 1 + sin²x - sinxcosx = 0
<=> 1 + (1 - cos2x)/2 - 1/2sin2x = 0
<=> 2 + 1 - cos2x - sin2x = 0
<=> sin2x + cos2x = 3
<=> √2.sin(2x + π/4) = 3
<=> sin(2x + π/4) = 3/√2
=> vô nghiệm
do sin(2x + π/4) ≤ 1 < 3/√2
Vậy pt đã cho có nghiệm là x = π/4 + lπ/2 (l ∈ Z)