\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{ x^2+13x+42}=\frac{1}{18}
\Leftrightarrow\frac {1}{x^2+5x+4x+20}+\frac{1}{x^2+6x+5x+30}+\frac{1}{ x^2+7x+6x+42}=\frac{1}{18}
\Leftrightarrow\frac {1}{x(x+5)+4(x+5)}+\frac{1}{x(x+6)+5(x+6)}+\frac{1 }{x(x+7)+6(x+7)}=\frac{1}{18}
\Leftrightarrow\frac {1}{(x+4)(x+5)}+\frac{1}{(x+5)(x+6)}+\frac{1}{(x+6 )(x+7)}=\frac{1}{18}
ĐKXĐ: \frac{x}{-4}
eq, \frac{x}{-5}
eq, \frac{x}{-6}
eq và \frac{x}{-7}
eq
\frac{1}{(x+4)(x+5)}+\frac{1}{(x+5)(x+6)}+\frac{1} {(x+6)(x+7)}=\frac{1}{18}
\Leftrightarrow \frac{x+5-x-4}{(x+4)(x+5)}+\frac{x+6-x-5}{(x+5)(x+6)}+\frac{x+7-x-6}{(x+6)(x+7)}={1}{18}
\Leftrightarrow \frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}
\Leftrightarrow \frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}