LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Lý thuyết Hàm Số

1 trả lời
Hỏi chi tiết
433
0
0
Bạch Tuyết
12/12/2017 02:06:20
 1) Định nghĩa
Cho \(D ∈ R,  D ≠ \phi\). Một hàm số xác định trên \(D\) là một quy tắc \(f\) cho tương ứng mỗi số \(x ∈ D\) với một và duy nhất chỉ một số \(y ∈ R\). Ta kí hiệu:
                                   \(f : D  → \mathbb R\)
                                          \(x → y = f(x)\)
Tập hợp \(D\) được gọi là tập xác định ( hay miền xác định) \(x\) được gọi là biến số (hay đối số), \(y_0= f(x_0)\) tại \(x = x_0\).
Một hàm số có thể được cho bằng một công thức hay bằng biểu đồ hay bằng bảng.
Lưu ý rằng, khi cho nột hàm số bằng công thức mà không nói rõ tập xác định thì ta ngầm hiểu tập xác định \(D\) là tập hợp các số \(x ∈\mathbb R\) mà các phép toán trong công thức có nghĩa.
2. Đồ thị
Đồ thị của hàm số:         \(f : D  → \mathbb R\)
                                              \( x → y = f(x)\)
là tập hợp các điểm \((x;f(x)), x ∈ D\) trên mặt phẳng tọa độ.
3. Sự biến thiên
Hàm số \(y = f(x)\) là đồng biến trên khoảng \((a;b)\) nếu với mọi \(x_1,x_2 ∈ (a;b)\) mà \({x_1} < {x_2} \Leftrightarrow f({x_1}) < f({x_2})\) hay \({x_1} \ne {x_2}\) ta có \(\frac{f(x_{1})-f(x_{2})}{x_{1}-x_{2}}> 0\).
Hàm số \(y = f(x)\) là nghịch biến trên khoảng \((a;b)\) nếu với mọi \({x_1},{x_2} \in (a;b)\) mà \({x_1} < {x_2} \Rightarrow f({x_1}) > f({x_2})\) hay \({x_1} \ne {x_2}\) ta có \(\frac{f(x_{1})-f(x_{2})}{x_{1}-x_{2}}< 0\).
4. Tính chẵn lẻ của hàm số
Hàm số \(f:  D → R\)
                     \( x → y = f(x)\) được gọi là hàm số chẵn nếu: \(x ∈ D \Rightarrow -x ∈ D\) và \(f(- x)=f(x)\), là hàm số lẻ nếu \(x ∈ D \Rightarrow -x ∈ D\) và \(f(- x) = -f(x)\).
Đồ thị của hàm số chẵn có trục đối xứng là trục tung. Đồ thị của hàm số lẻ nhận gốc \(O\) của hệ trục tọa độ làm tâm đối xứng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 10 mới nhất
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư