1. Số nghịch đảo
Hai số được gọi là nghịch đảo của nhau nếu tích của chúng bằng 1.
Từ đó suy ra chỉ có những số khác 0 thì mới có số nghịch đảo.
Nếu phân số \(\frac{a}{b}\neq 0\) thì số nghịch đảo của nó là \(\frac{b}{a}\) .
2. Phép chia phân số
Muốn chia một phân số cho một phân số khác 0, ta nhân phân số bị chia với số nghịch đảo của số chia.
\(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{d}{c}\), với \(\frac{c}{d}\neq 0\).
Nói riêng:
Nếu a là một số nguyên và \(\frac{c}{d}\neq 0\) thì \(a:\frac{c}{d}=\frac{a}{1}:\frac{c}{d}=\frac{a}{1}.\frac{d}{c}=\frac{a.d}{c}\).
Nếu c là một số nguyên khác 0 thì \(\frac{a}{b}:c=\frac{a}{b}:\frac{c}{1}=\frac{a}{b}.\frac{1}{c}=\frac{a}{b.c}\) .
Như vậy :
Muốn chia một số nguyên cho một phân số khác 0, ta nhân số nguyên với nghịch đảo của số chia.
\(a:\frac{c}{d}=\frac{a.d}{c}\).
Muốn chia một phân số cho một số nguyên khác 0, ta nhân mẫu của phân số bị chia với số nguyên và giữ nguyên tử số.
\(\frac{a}{b}:c=\frac{a}{b.c}\).
Lưu ý:
a) Nếu \(\frac{a}{b}\neq 0\) , \(\frac{c}{d}\neq 0\) và \(\frac{a}{b}:\frac{c}{d}=\frac{p}{q}\) thì nhân cả hai vế của đẳng thức này với \(\frac{c}{d}\) ta được \(\left (\frac{a}{b}:\frac{c}{d} \right ).\frac{c}{d}=\frac{p}{q}.\frac{c}{d}.\)
Nhưng vế trái
\(\left (\frac{a}{b}:\frac{c}{d} \right ).\frac{c}{d}=\left (\frac{a}{b}.\frac{d}{c} \right ).\frac{c}{d}=\frac{a}{b}.\left (\frac{d}{c}.\frac{c}{d} \right )=\frac{a}{b}.1=\frac{a}{b}\).
Vậy \(\frac{a}{b}=\frac{p}{q}.\frac{c}{d}\).
Bây giờ chia cả hai vế của đẳng thức vừa tìm được cho \(\frac{p}{q}\) ta được:
\(\frac{a}{b}:\frac{p}{q}=\left (\frac{p}{q}.\frac{c}{d} \right ):\frac{p}{q}=\left (\frac{p}{q}.\frac{c}{d} \right ).\frac{q}{p}\)
\(=\left (\frac{c}{d}.\frac{p}{q} \right ).\frac{q}{p}=\frac{c}{d}.\left (\frac{p}{q}.\frac{q}{p} \right )\frac{c}{d}.1=\frac{c}{d}.\)
Vậy \(\frac{c}{d}=\frac{a}{b}:\frac{c}{d}.\)
b) Nếu \(\frac{c}{d}\neq 0\) và \(\frac{a}{b}.\frac{c}{d}=\frac{p}{q}\) thì \(\frac{a}{b}=\frac{p}{q}:\frac{c}{d}.\)
Thật vậy nếu \(\frac{c}{d}\neq 0\) và \(\frac{a}{b}.\frac{c}{d}=\frac{p}{q}\) thì chia cả hai vế của đẳng thức cho \(\frac{c}{d}\) ta được:
\(\left (\frac{a}{b}.\frac{c}{d} \right ):\frac{c}{d}=\left (\frac{a}{b}.\frac{c}{d} \right ).\frac{d}{c}=\frac{a}{b}.\left (\frac{c}{d}.\frac{d}{c} \right )=\frac{a}{b}.1=\frac{a}{b}.\)
Vậy \(\frac{a}{b}=\frac{p}{q}:\frac{c}{d}\).