Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 1\) thì \(A\) có tọa độ là
Nguyễn Thị Thảo Vân | Chat Online | |
05/09 22:33:06 (Toán học - Lớp 12) |
9 lượt xem
Gọi \(A\) là điểm cực đại của đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 1\) thì \(A\) có tọa độ là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \(A\left( { - 1; - 6} \right).\) 0 % | 0 phiếu |
B. \(A\left( {0; - 1} \right).\) 0 % | 0 phiếu |
C. \(A\left( {1; - 2} \right).\) 0 % | 0 phiếu |
D. \(A\left( {2;3} \right).\) 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Giả sử các biểu thức chứa logarit đều có nghĩa. Mệnh đề nào sau đây đúng? (Toán học - Lớp 12)
- Cho mặt cầu \(S\left( {I;R} \right)\) và điểm \(A\) nằm ngoài mặt cầu. Qua \(A\) kẻ đường thẳng cắt \(\left( S \right)\) tại hai điểm phân biệt \(B,C.\) Tích \(AB.AC\) bằng (Toán học - Lớp 12)
- Tìm tất cả các giá trị tực của tham số \(m\) để hàm số \(y = \frac\) đồng biến trên từng khoảng xác định. (Toán học - Lớp 12)
- Với giá trị nào của \(m\) thì đồ thị hàm số \(y = \frac{{2{x^2} + 6mx + 4}}\) đi qua điểm \(A\left( { - 1;4} \right)?\) (Toán học - Lớp 12)
- Trung điểm các cạnh của hình tứ diện đều tạo thành (Toán học - Lớp 12)
- Số đường tiệm cận của đồ thị hàm số \(y = \frac{x}{{{x^2} - 1}}\) là: (Toán học - Lớp 12)
- Cho \(a >0\) và khác \(1,b >0,c >0\) và \({\log _a}b = - 2,{\log _a}c = 5.\) Giá trị của \({\log _a}\frac{{a\sqrt b }}{{\sqrt[3]{c}}}\) là (Toán học - Lớp 12)
- Cho đường cong \(\left( C \right)\) có phương trình \(y = \frac.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là (Toán học - Lớp 12)
- Đồ thị của hai hàm số \(y = 4{x^4} - 2{x^2} + 1\) và \(y = {x^2} + x + 1\) có tất cả bao nhiêu điểm chung? (Toán học - Lớp 12)
- Xét khẳng định: “Với mọi số thực \(a\) và hai số hữu tỉ \(r,s\), ta có \({\left( {a'} \right)^2} = a{'^2}\)”. Với điều kiện nào trong các điều kiện sau thì khẳng định trên đúng. (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)