Hàm số nào sau đây nghịch biến trên \[\mathbb{R}\]?
Đặng Bảo Trâm | Chat Online | |
07/09 12:53:10 (Toán học - Lớp 12) |
5 lượt xem
Hàm số nào sau đây nghịch biến trên \[\mathbb{R}\]?
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[y = - {x^4} + 2{x^2} - 2\]. 0 % | 0 phiếu |
B. \[y = {x^4} - 3{x^2} + 5\]. 0 % | 0 phiếu |
C. \[y = - {x^3} + {x^2} - 2x - 1\]. 0 % | 0 phiếu |
D. \[y = - {x^3} - 3{x^2} + 4\]. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + m} \right|\). Khi \(m\) thuộc \(\left[ { - 3;3} \right]\) thì giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {0;2} \right]\) đạt giá trị lớn nhất bằng (Toán học - Lớp 12)
- Cho hàm đa thức \[y = f\left( x \right)\] có đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ dưới đây. Số điểm cực trị của hàm số \[g\left( x \right) = f\left( {{x^4} - 2{x^2} - 3} \right) - 2{x^4} + 4{x^2} + 2020\] là (Toán học - Lớp 12)
- Cho lăng trụ tam giác đều \[ABC.A'B'C'\] có cạnh đáy bằng \[a\] và \[AB' \bot BC'\]. Tính thể tích của khối lăng trụ. (Toán học - Lớp 12)
- Cho hình chóp \(S.ABC\), \(M\)và \(N\) là các điểm thuộc các cạnh \(SA\) và \(SB\) sao cho \(MA = 2SM\), \(SN = 2NB\), \(\left( \alpha \right)\) là mặt phẳng qua \(MN\) và song song với \(SC\). Mặt phẳng \(\left( \alpha \right)\) chia khối chóp ... (Toán học - Lớp 12)
- Cho hàm số \(y = f(x)\)thỏa mãn \[f(u + v) = f(u) + f(v)\]với \(\forall \,u,\,v \in R\). Biết \(f(4) = 5\), hỏi giá trị của\(f( - 6)\)nằm trong khoảng nào dưới đây ? (Toán học - Lớp 12)
- Cho hàm số \(y = \frac\)có đồ thị \(\left( C \right)\)và đường thẳng \(2x + y - m = 0\). Tìm m để hai đồ thị trên cắt nhau tại hai điểm \(A\), \(B\)phân biệt, đồng thời trung điểm của đoạn \(AB\)nằm trên đường tròn có tâm \(I\left( ... (Toán học - Lớp 12)
- Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như hình bên dưới Đồ thị hàm số \(g\left( x \right) = \frac{1}{{2f\left( {x + 3} \right) + 1}}\) có bao nhiêu tiệm cận đứng? (Toán học - Lớp 12)
- Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Tập hợp các giá trị thực của tham số \(m\) để phương trình \(f\left( {\sqrt {4x - {x^2}} - 1} \right) = m\) có nghiệm là (Toán học - Lớp 12)
- Tìm \(m\) để hàm số \(f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 4} \right)x\) đạt cực đại tại \(x = 1\). (Toán học - Lớp 12)
- Đặt \(S\)là tập hợp tất cả các số nguyên âm \(m\)thỏa thỏa mãn điều kiện hàm số \[y = \frac{{{m^3}x + 16}}\]đồng biến trên khoảng \(\left( {5; + \infty } \right)\). Hỏi \(S\)có bao nhiêu phần tử? (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)