Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và \[\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)dx} = \int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x = 2.\] Tính \(I = \int\limits_0^1 {f\left( x \right)} \,{\rm{d}}x.\)

Phạm Văn Bắc | Chat Online
05/09 06:25:42 (Tổng hợp - Lớp 12)
10 lượt xem

Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và \[\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)dx} = \int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x = 2.\] Tính \(I = \int\limits_0^1 {f\left( x \right)} \,{\rm{d}}x.\)

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \(I = - 4.\)
0 %
0 phiếu
B. \(I = 2.\)
0 %
0 phiếu
C. \(I = 4.\)
0 %
0 phiếu
D. \(I = 6.\)
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×