Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):y - 2z + 1 = 0\) và đường thẳng \(d:\frac{1} = \frac{{ - 1}} = \frac{z}{1}\). Mặt phẳng \(\left( Q \right):ax + by + cz - 7 = 0\) đi qua điểm \(A\left( {2;3; - 1} \right)\), đồng thời vuông góc với mặt phẳng \(\left( P \right)\) và song song với đường thẳng d. Tính \(a + b + c\).
Nguyễn Thu Hiền | Chat Online | |
05/09 06:28:53 (Toán học - Lớp 12) |
20 lượt xem
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):y - 2z + 1 = 0\) và đường thẳng \(d:\frac{1} = \frac{{ - 1}} = \frac{z}{1}\). Mặt phẳng \(\left( Q \right):ax + by + cz - 7 = 0\) đi qua điểm \(A\left( {2;3; - 1} \right)\), đồng thời vuông góc với mặt phẳng \(\left( P \right)\) và song song với đường thẳng d. Tính \(a + b + c\).
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 6. 0 % | 0 phiếu |
B. 7. 0 % | 0 phiếu |
C. 5. 0 % | 0 phiếu |
D. 4. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Côsin của góc giữa đường thẳng SC và mặt phẳng \(\left( {ABC} \right)\) bằng (Toán học - Lớp 12)
- Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy ABC là tam giác đều. Cạnh \(AA' = a\sqrt 6 \) và khoảng cách từ điểm A đến mặt phẳng \(\left( {A'BC} \right)\) là \(a\sqrt 2 \). Tính thể tích V của khối lăng trụ \(ABC.A'B'C'\). (Toán học - Lớp 12)
- Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau: \(x\) \( - \infty \) 1 3 \( + \infty \) \(f'\left( x \right)\) + 0 - 0 + \(f\left( x \right)\) 3 \( + \infty ... (Toán học - Lớp 12)
- Cho hàm số \(y = m{x^3} + m{x^2} - x + 2\). Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)? (Toán học - Lớp 12)
- Có bao nhiêu số phức \(z\) thỏa mãn \(\left| z \right| = \left| {z + \overline z } \right| = 1\)? (Toán học - Lớp 12)
- Biết rằng \(\int\limits_0^1 {\frac{{2{x^2} + 3x + 4}}dx} = a + b\ln 2\) với \(a,b \in \mathbb{Z}\). Tính \(S = {a^4} + {b^4}\). (Toán học - Lớp 12)
- Cho hàm số \(y = {x^3} - \left( {m + n} \right){x^2} + \left( {2n - m} \right)x - 1\) (m, n là tham số thực) đạt cực trị tại \(x = 1\) và \(x = 5\). Mệnh đề nào dưới đây là đúng? (Toán học - Lớp 12)
- Tập nghiệm của phương trình \({\log _2}\left( {{x^2} + 4} \right) - {\log _2}\left( {x - 1} \right) = 3\) là (Toán học - Lớp 12)
- Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{{x^2} - 5x + 6}}\) là (Toán học - Lớp 12)
- Cho hình chóp S.ABC có đáy ABC là tam giác đều. Cạnh SA vuông góc với mặt phẳng đáy và \(AB = a,{\rm{ }}SB = a\sqrt 2 \). Thể tích của khối chóp S.ABC bằng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Trong các phát biểu sau đây phát biểu nào không là mệnh đề. (Tin học)
- Số xâu khác nhau có thể tạo được từ các chữ cái của từ ORONO là: (Tin học)
- Cho quan hệ R = {(a,b) | a|b}trên tập số nguyên dương. Hỏi R KHÔNG có tính chất nào? (Tin học)
- Câu nào sau đây KHÔNG là một mệnh đề? (Tin học)
- Phương trình x + y + z = 15 có số nghiệm nguyên không âm là: (Tin học)
- Cho đồ thị G có 5 đỉnh có bậc lần lượt là 2, 2, 3, 4, 5. Bậc của đồ thị G là: (Tin học)
- Một cây có ít nhất mấy đỉnh treo? (Tin học)
- Cho đồ thị G có 9 đỉnh có bậc lần lượt là 1, 2, 2, 3, 3, 4, 4, 4, 5. Số cạnh của đồ thị G là: (Tin học)
- Cho đồ thị G có bậc là 10. Số cạnh của đồ thị G là: (Tin học)
- Chọn phát biểu nào sau đây là chính xác nhất: (Tin học)