Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như hình sau: Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[{2.6^{f\left( x \right)}} + \left( {{f^2}\left( x \right) - 1} \right){.9^{f\left( x \right)}} - {3.4^{f\left( x \right)}}.m \ge \left( {2{m^2} + 2m} \right){.2^{2f\left( x \right)}}\] nghiệm đúng với mọi \[x \in \mathbb{R}\]?

CenaZero♡ | Chat Online
05/09/2024 12:02:17 (Toán học - Lớp 12)
10 lượt xem

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như hình sau:

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[{2.6^{f\left( x \right)}} + \left( {{f^2}\left( x \right) - 1} \right){.9^{f\left( x \right)}} - {3.4^{f\left( x \right)}}.m \ge \left( {2{m^2} + 2m} \right){.2^{2f\left( x \right)}}\] nghiệm đúng với mọi \[x \in \mathbb{R}\]?

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như hình sau: Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[{2.6^{f\left( x \right)}} + \left( {{f^2}\left( x \right) - 1} \right){.9^{f\left( x \right)}} - {3.4^{f\left( x \right)}}.m \ge \left( {2{m^2} + 2m} \right){.2^{2f\left( x \right)}}\] nghiệm đúng với mọi \[x \in \mathbb{R}\]?
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. 3.
0 %
0 phiếu
B. 5.
0 %
0 phiếu
C. 6.
0 %
0 phiếu
D. 4.
1 phiếu (100%)
Tổng cộng:
1 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×