Cho hàm số \({\rm{y}} = {\rm{f}}\left( x \right)\) có đạo hàm liên tục trên \[\left[ {0\,;\,\,1} \right],\] thỏa mãn \({\left[ {f'\left( x \right)} \right]^2} = 4\left[ {2{x^2} + 1 - f\left( x \right)} \right]\) với mọi \(x\) thuộc đoạn \[\left[ {0\,;\,\,1} \right]\] và \(f(1) = 2\). Giá trị \[I = \int\limits_0^1 {x \cdot f\left( x \right)dx} \] bằng

Trần Đan Phương | Chat Online
05/09 12:20:10 (Tổng hợp - Lớp 12)
9 lượt xem

Cho hàm số \({\rm{y}} = {\rm{f}}\left( x \right)\) có đạo hàm liên tục trên \[\left[ {0\,;\,\,1} \right],\] thỏa mãn \({\left[ {f'\left( x \right)} \right]^2} = 4\left[ {2{x^2} + 1 - f\left( x \right)} \right]\) với mọi \(x\) thuộc đoạn \[\left[ {0\,;\,\,1} \right]\] và \(f(1) = 2\). Giá trị \[I = \int\limits_0^1 {x \cdot f\left( x \right)dx} \] bằng

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \(\frac{3}{4}\).
0 %
0 phiếu
B. \(\frac{2}{3}\).
0 %
0 phiếu
C. \(\frac{1}{4}\).
0 %
0 phiếu
D. \(\frac{4}{3}\).
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×