Trong không gian Oxyz, cho hai điểm M(−2;−2;1),A(1;2;−3) và đường thẳng \[d:\frac{2} = \frac{2} = \frac{z}{{ - 1}}.\] Gọi \[\Delta \] là đường thẳng qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng bé nhất. Khoảng cách bé nhất đó là
Nguyễn Thu Hiền | Chat Online | |
05/09 12:57:51 (Tổng hợp - Lớp 12) |
3 lượt xem
Trong không gian Oxyz, cho hai điểm M(−2;−2;1),A(1;2;−3) và đường thẳng \[d:\frac{2} = \frac{2} = \frac{z}{{ - 1}}.\] Gọi \[\Delta \] là đường thẳng qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng bé nhất. Khoảng cách bé nhất đó là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[\sqrt {29} \] 0 % | 0 phiếu |
B. 6 0 % | 0 phiếu |
C. 5 0 % | 0 phiếu |
D. \[\frac{{\sqrt {34} }}{9}\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Trong không gian Oxyz, cho đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 + t}\\{z = 3}\end{array}} \right.\)và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2 + 7t}\\{z = 3 + t}\end{array}} \right.\). Phương trình ... (Tổng hợp - Lớp 12)
- Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình \[\frac{3} = \frac{2} = \frac{{ - 4}}\;\] và \[d\prime :\frac{4} = \frac{y}{1} = \frac{2}\;\;\]. Điểm nào sau đây không thuộc ... (Tổng hợp - Lớp 12)
- Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;0;2), B(1;0;0), C(2;2;0) và D(0;m;0). Điều kiện cần và đủ của m để khoảng cách giữa hai đường thẳng AB và CD bằng 2 là: (Tổng hợp - Lớp 12)
- Cho hình lập phương A(0;0;0),B(1;0;0),D(0;1;0),A′(0;0;1). Gọi M,N lần lượt là trung điểm của AB,CD. Khoảng cách giữa MN và A′C là: (Tổng hợp - Lớp 12)
- Góc giữa hai đường thẳng có các VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \) thỏa mãn: (Tổng hợp - Lớp 12)
- Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \[{d_1}:\frac{2} = \frac{{ - 1}} = \frac{1},{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 1 + 2t}\\{z = - 1 + t}\end{array}} \right.\] và điểm A(1;2;3). ... (Tổng hợp - Lớp 12)
- Khoảng cách giữa hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = - 1 + t}\\{z = 1}\end{array}} \right.,{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 1 + t}\\{z = 3 - t}\end{array}} \right.\) là: (Tổng hợp - Lớp 12)
- Cho hai đường thẳng \[\Delta ,\Delta \prime \;\] có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \) và đi qua các điểm M,M′. Khi đó: (Tổng hợp - Lớp 12)
- Cho hai điểm A(1;−2;0),B(0;1;1), độ dài đường cao OH của tam giác OAB là: (Tổng hợp - Lớp 12)
- Khoảng cách từ điểm M(2;0;1) đến đường thẳng \[\Delta :\frac{1} = \frac{y}{2} = \frac{1}\;\] là: (Tổng hợp - Lớp 12)
Trắc nghiệm mới nhất
- Em hãy chọn đáp án đúng nhất Hỗn số chỉ số phần đã tô màu trong hình vẽ sau là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số Chín và năm phần mười hai được viết là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số \({\bf{3}}\frac{{\bf{1}}}{{\bf{5}}}\) Hỗn số trên được đọc là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số \({\bf{5}}\frac{{\bf{7}}}{{\bf{9}}}\) Hỗn số trên được đọc là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Số thích hợp điền vào ô trống là: \[\frac{1}{2} + \frac{2}{3} < \frac{2} < \frac{4} - \frac{1}{6}\] (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của biểu thức \[\frac{{\bf{9}}}{{\bf{4}}}{\bf{ - }}\left( {\frac{{\bf{2}}}{{\bf{3}}}{\bf{ + }}\frac{{\bf{5}}}{{\bf{6}}}} \right)\] là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của phép tính \[\frac{{\bf{8}}}{{\bf{3}}}{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}\] là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của phép tính \[\frac{{\bf{6}}}{{\bf{5}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{9}}}\] là: (Toán học - Lớp 5)
- Kết quả của phép tính \(\frac{{{\bf{12}}}}{{\bf{7}}}{\bf{:6}}\) là: (Toán học - Lớp 5)
- Kết quả của phép tính \({\bf{9 \times }}\frac{{\bf{7}}}{{{\bf{18}}}}\) là: (Toán học - Lớp 5)