Bài tập  /  Bài đang cần trả lời

Cho ∆ABC cân tại A, trên tia đối của tia BC lấy M, trên tia đối của tia CB lấy N sao cho BM=CN. CM  ∆ABM= ∆ACN

cho ∆ABC cân tại A, trên tia đối của tia BC lấy M, trên tia đối của tia CB lấy N sao cho BM=CN
a) CM  ∆ABM= ∆ACN . Từ đó chỉ ra ∆ANM cân tại A
b) Kẻ BH ┴ AM (H thuộc AM), CK ┴ AN(K thuộc AN). Chứng minh BH=CK
c) Chứng minh AH=AK
2 Xem trả lời
Hỏi chi tiết
645
2
0
Khải
15/02/2022 12:35:16
+5đ tặng
a) ∆ABC cân, suy ra góc B1= góc C1
⇒góc ABM = góc ACN
Xét ∆ABM và ∆CAN có:
AB = AC (gt)
góc ABM = góc ACN
BM = ON (gt)
Suy ra góc M = góc N
=>∆AMN là tam giác cân ở A.
b) Hai tam giác vuông ∆BHM và ∆CKN có :
BM = CN (gt)
góc M = góc N(CMT)
Nên ∆BHM = ∆CHN (cạnh huyền, góc nhọn)
Suy ra BH = CK.
c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (1)
Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (2)
Do đó AH = AM – HM = AN – KN = AK theo (1) và (2)
Vậy AH = AK.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Tạ Thị Thu Thủy
15/02/2022 12:35:17
+4đ tặng

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×