Bài tập  /  Bài đang cần trả lời

Chứng minh AH là đường trung trực của ED

2 Xem trả lời
Hỏi chi tiết
306
2
0
Mar
04/05/2022 19:19:31
+5đ tặng

. Xét tam giác ABD và tam giác ACE có:

-AEC=ADB=90 (gt)

-AB=AC (2 cạnh bên tam giác cân ABC)

-A là góc chung

=> tam giác ABD = tam giác ACE (g.c.g) (đpcm)

b.*Vì tam giác ABD = tam giác ACE (câu a)

=> BH=CH (2 cạnh tương ứng)

*Xét tam giác EHB và tam giác DHC có:

-BEH=CDH=90 (gt)

-BH=CH (CM trên)

-EHB=DHC (đối đỉnh)

=> tam giác EHB = tam giác DHC (c.huyền-g.nhọn)

=>EB=DC (2 cạnh tương ứng)

*Ta có: AB=AE+EB

        và AC=AD+DC

mà AB=AC (2 cạnh bên tam giác cân ABC) 

 và EB=DC (CM trên)

=>AE=AD

=> Tam giác ADE cân tại A (đpcm)

c. Vì AE=AD (CM trên)

    và HE=HD (CM trên)

=> AH là đường trung trực của ED (đpcm)

d. *Xét tam giác DKC và tam giác DBC có:

-BDC=KDC=90 (gt)

-BD=KD (gt)

-DC là cạnh chung

=>tam giác DKC = tam giác DBC (c.g.c)

=> DBC=DKC (2 góc tương ứng) (1)

*Vì BH=CH (câu b)

=> tam giác HBC cân tại H

=>DBC=ECB (2 góc ở đáy tam giác cân) (2)

*Từ (1) và (2) => ECB=DKC (đpcm)

 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Tuấn Tú
04/05/2022 19:20:44
+4đ tặng

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

ˆAA^ chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE
hay ΔADE cân tại A

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

AE=AD

Do đó ΔAEH=ΔADH

Suy ra: HE=HD

hay H nằm trên đường trung trực của ED(1)

Ta có: AE=AD
nên A nằm trên đường trung trực của ED(2)

Từ (1) và (2) suy ra AH là đường trung trực của ED

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×