Bài tập  /  Bài đang cần trả lời

Chứng minh tứ giác BDEC là hình thang cân

Cho hình bình hành ABCD , gọi E là điểm đối xứng với A qua BD .Cm tứ giác BDEC là hình thang cân
1 Xem trả lời
Hỏi chi tiết
85
2
0
Verity
30/10/2022 16:16:42
+5đ tặng

Lấy giao điểm của AE với BD là H. Vẽ O là giao điểm của 2 đường chéo AC và BD.

Có ngay O là trung điểm AC (Theo t/c hình bình hành)

Thấy A và E đối xứng trục qua BD; AE cắt BD ở H

Nên ta có: H là trung điểm AE và AE vuông góc BD tại H.

Trong ΔAEC có: H là trung điểm của AE; O là trung điểm của AC (cmt)

=> OH là đường trung bình ΔAEC 

=> OH // EC hay BD // EC => Tứ giác BDEC là hình thang (1)

Dễ thấy: ΔADE cân ở D có đường cao DH => DH cũng là phân giác ^ADE

=> ^ADH = ^EDH hay ^ADB = ^EDB. Mà ^ADB = ^CBD => ^CBD = ^EDB (2)

Từ (1) và (2) => Tứ giác BDEC là hình thang cân (đpcm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×