Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có AM là đường trung tuyến, Kẻ BE và CF cùng vuông góc với đường thẳng AM ở E và F

3 Xem trả lời
Hỏi chi tiết
241
1
4
Tr Hải
01/06/2023 19:01:50
+5đ tặng

b, xét tam giác MFB và tam giác MEC có : MB = MC do M là trđ của BC (gt)

^MFB = ^MEC = 90

^BMF = ^EMC (đối đỉnh)

=> tg MFB = tg MEC (ch-gn)

=> ^FBM = ^MCE (đn) mà 2 góc này slt

=> BF // EC (đl)

a, tg MFB = tg MEC (câu a)

=> FM = EM (đn)

xét tam giác EMB và tg FMC có : BM = MC (Câu a)

^BME = ^FMC (đối đỉnh)

=> tg EMB = tg FMC (c-g-c)

c, trên tia đối của tia MA lấy điểm O sao cho AM = MO

AM + MO = AO

=> AO = 2AM                                        (1)

có AM = MO

FM = ME

AM + ME = AE

MO + MF = FO

=> AE = FO

=> AE + AF = FO + AF

=> AE + AF = OA và (1)

=> AE + AF = 2AM

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
4
Phạm Quang Minh
01/06/2023 19:02:42
+4đ tặng
Phạm Quang Minh
Chấm đ nhé
1
3
Nguyễn Khiem
01/06/2023 19:09:00
+3đ tặng

a, tg MFB = tg MEC (câu a)

=> FM = EM (đn)

xét tam giác EMB và tg FMC có : BM = MC (Câu a)

^BME = ^FMC (đối đỉnh)

=> tg EMB = tg FMC (c-g-c)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×