LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Chứng minh rằng x+2y+z > (2-x)(2-y)(2-z)

cho 3 số a,b,c > 0 thỏa mãn x+y+z=2,cmr

x+2y+z > (2-x)(2-y)(2-z)

2 trả lời
Hỏi chi tiết
102
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh điều phải chứng minh, ta sẽ sử dụng bất đẳng thức AM-GM.

Áp dụng bất đẳng thức AM-GM cho 3 số x, y, z ta có:
x + y + z ≥ 3√(xyz)

Vì x + y + z = 2, nên ta có:
2 ≥ 3√(xyz)

Bình phương cả 2 vế của bất đẳng thức trên ta có:
4 ≥ 9xyz

Chia cả 2 vế cho 9 ta có:
4/9 ≥ xyz

Áp dụng bất đẳng thức AM-GM cho 3 số 2 - x, 2 - y, 2 - z ta có:
(2 - x) + (2 - y) + (2 - z) ≥ 3√((2 - x)(2 - y)(2 - z))

Vì (2 - x) + (2 - y) + (2 - z) = 6 - (x + y + z) = 6 - 2 = 4, nên ta có:
4 ≥ 3√((2 - x)(2 - y)(2 - z))

Bình phương cả 2 vế của bất đẳng thức trên ta có:
16 ≥ 9(2 - x)(2 - y)(2 - z)

Vậy ta đã chứng minh được x + 2y + z ≥ (2 - x)(2 - y)(2 - z).
1
0
Nguyen Mai Anh
01/07/2023 17:45:30
+5đ tặng
cham diem cho minh nhe

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
YNan
12/12/2023 19:35:40
=  32145 vì 2y 
+ 29 = 9845

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư