Bài tập  /  Bài đang cần trả lời

Cho tam giác abc vuông tại a ah vuông góc với bc

cho tam giác abc vuông tại a ah vuông góc với bc.
a,chứng minh góc b= góc hac,góc c= góc bah
.b,kẻ ad là tia phân giác của bah,(dthuộc bh) chứng minh góc dac=góc adc.
c,kẻ tia phân giác c cắt ad,ah,ab tại k,m,n .Chứng minh CKvuông góc với AD.cứu với
2 trả lời
Hỏi chi tiết
59
1
1
Tr Hải
08/07/2023 08:35:52
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Kim Mai
08/07/2023 08:37:46
+4đ tặng

a) \(\widehat{BAH}=\widehat{C}\) (vì cùng phụ với \(\widehat{B}\))          (1)

   \(\widehat{CAH}=\widehat{B}\) (vì cùng phụ với \(\widehat{C}\))         (2)

Xét tam giác DAB có: \(\widehat{ADC}=\widehat{DAB}+\widehat{B}\)    (vì góc ngoài bằng tổng hai góc trong không kề với nó)

Ta lại có: \(\widehat{DAC}=\widehat{DAH}+\widehat{HAC}\)

Mà \(\widehat{DAB}=\widehat{DAH}\) (tính chất tia phân giác)

      \(\widehat{B}=\widehat{HAC}\) (theo (2))

=> \(\widehat{ADC}=\widehat{DAC}\)

b) Theo câu a ta có: \(\widehat{C}=\widehat{HAB}\)

=> \(\widehat{C_1}=\widehat{C_2}=\widehat{A_1}=\widehat{A_2}\)

Xét tam giác ACK có tổng 2 góc A và C là:

\(\widehat{ACK}+\widehat{CAK}=\widehat{C_2}+\widehat{CAK}=\widehat{A_1}+\widehat{CAK}=\widehat{CAB}=90^o\)

=> Góc còn lại bằng 90 độ, tức là \(\widehat{AKC}=180^o-\left(\widehat{ACK}+\widehat{CAK}\right)=180^o-90^o=90^o\)

=> CK vuông góc với AD

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư