Cho tam giác ABC vuông tại A, phân giác BD (D thuộc AC) VẼ DH vuông góc BC tại H,
a, chứng minh tam giác ABD = tam giác HBD
b, Gọi e là giao điểm của đường thẳng AB và đường thẳng HD. Chứng minh DC =DE
c,Chứng minh AH song song CE
d, phân giác của góc ACB cắt BD tại I, kẻ IM=AB (M thuộc AB). Chứng minh AB+AC-BC=2AM
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) xét tam giác abd và tam giác hbd co
góc abd= góc hbd
bd là cạnh chung
góc bad= góc bhd
=> tam giác abd= tam giác hbd
b)xét tam giác ade và tam giác hdc có
ad=hd (cmt)
góc ade= góc hdc (doi dinh)
góc ead=góc chd =90 độ
=>tam giác ade= tam giác hdc
ma canh hd đối diện vs gốc dch ( goc nhon) (1)
cạnh de đối diện vs góc ead (goc vuong) (2)
tu (1) va (2) =>de>dh
=> DE = DC
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |