Bài tập  /  Bài đang cần trả lời

Bài tập toán lớp 10

gthich đáp án th ạ, không cần chi tiết ạ
----- Nội dung dịch tự động từ ảnh -----
LỚP 10 – 2023-2024
Câu 8.
BPT-HỆ BPT BẬC NHẤT 2 BIẾN
điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để số điểm thưởng là lớn nhất.
nước và 4(g) hương liệu. Mỗi lít nước cam được 60 điểm thưởng, mỗi lít nước táo được 80
Câu 9.
C. 620
D. 660.
A. 720
B. 640
Trong một cuộc thi gói bánh trong dịp tết Nguyên Đán của trường THPT Binh Minh, mỗi lớp
được sử dụng tối đa 8 kg gạo nếp, 1kg thịt; 2,5 kg đậu xanh để gói bánh chưng và bánh tết bá
gói 1 cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh. Để gói 1 cái bánh tết
cần 0,6 kg gạo nếp, 0,05 kg thịt và 0,15kg đậu xanh. Mỗi bánh chưng được 6 điểm thưởng
mỗi bánh tét được 8 điểm thưởng. Tổng số điểm thưởng cao nhất có thể đạt được của mỗi lớp là
C. 106.
D. 110.
A. 112.
B. 120.
Trong đợt nghỉ hè bạn Hoa phụ giúp gia đình bằng cách quấn khung cho mẹ (Mẹ bạn Hoa đan
bèo). Mẹ bạn đan hai mẫu sản phẩm. Sau khi trừ chi phí nguyên liệu thì mỗi sản phẩm loại I tại
80 nghìn đồng. Mỗi sản phẩm loại II lãi 130 nghìn đồng. Biết muốn hoàn thiện một sản phẩm
loại / thì bạn Hoa cần quấn khung trong một giờ, và mẹ cần đan trong hai giờ. Muốn hoàn thiện
một sản phẩm loại II thì bạn Hoa cần quấn khung trong hai giờ, và mẹ cần đan trong ba giờ.
Biết mẹ bạn Hoa làm việc một ngày không quá giờ, Bạn Hoa làm việc một ngày không quá
6 giờ và sản phẩm chỉ được tính tiền khi hoàn thành xong cả hai công đoạn. Số tiền lớn nhất mà
mẹ bạn Hoa và bạn Hoa có thể làm trong một ngày là?
10
A. 400.
B. 480.
C. 450.
D. 420.
Câu 10. Một công ty cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê xe có hai loại xe A và B,
trong đó loại xe A có 10 chiếc và loại xe B có 9 chiếc. Một chiếc xe loại 4 cho thuê với 4
triệu đồng, một chiếc loại B cho thuê với giá 3 triệu. Biết rằng mỗi xe loại 4 có thể chở tối đa
20 người và 0,6 tấn hàng; mỗi xe loại B có thể chở tối đa 10 người và 1,5 tấn hàng. Hỏi phải
thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là ít nhất ?
A. 10 xe loại 4 và 2 xe loại B.
B. 5 xe loại 4 và 4 xe loại B.
D. 4 xe loại 4 và 5 xe loại B.
C. 10 xe loại A và 9 xe loại B.
Câu 11. Trong một cuộc thi làm sinh tố, mỗi đội chơi được sử dụng tối đa 24 g hương liệu, 9 lít nước và
210g đường để pha chế sinh tố cam và sinh tố xoài.
-
- Để pha chế 1 lít sinh tố cam cần 30g đường, 1 lít nước và 1 g hương liệu;
- Để pha chế 1 lít nước sinh tố xoài cần 10g đường, 1 lít nước và 4 g hương liệu.
Mỗi lít sinh tố cam nhận được 60 điểm thưởng, mỗi lít sinh tố xoài nhận được 80 điểm thưởng.
Hỏi cần pha chế bao nhiêu lít sinh tố mỗi loại để đạt được số điểm thưởng cao nhất?
A. 5 lít sinh tố cam và 4 lit sinh tố xoài.
C. 4 lit sinh tố cam và 5 lit sinh tố xoài.
B. 6 lít sinh tố cam và 5 lit sinh tố xoài.
D. 4 lit sinh tố cam và 6 lít sinh tố xoài.
LỚP 10
Dang
Câu 1.
Câu
Câu
SI
1 Xem trả lời
Hỏi chi tiết
226
1
0
Lượng
06/08/2023 06:48:57
+5đ tặng

BÀI 11  Đáp án cần chọn là: C
Giả sử x,y lần lượt là số lít nước cam và số lít nước táo mà mỗi đội cần pha chế.

Suy ra 30x+10y là số gam đường cần dùng;

    x+y là số lít nước cần dùng;

    x+4y là số gam hương liệu cần dùng.

 

            

                                  I---------
                                         x≥0                                x> bằng 0
                                   I     y≥0                                   y≥0

Theo giả thiết ta có    I     30x+10y≤210        =>           3x+y≤21

                                   I    x+y≤9x+4y≤24                x+y≤9x+4y≤24
                                
                                   I------
                             
           

Số điểm thưởng nhận được sẽ là P(x;y)=60x+80y

Ta đi tìm giá trị nhỏ nhất của biểu thức P với x,y thỏa mãn (∗)(∗).

                  

Miền nghiệm là phần hình vẽ không tô màu ở hình trên, hay là ngũ giác OBCDE với O(0;0),B(0;6),C(4;5),D(6;3),E(7;0)(0;0),(0;6),(4;5),(6;3),(7;0).

Biểu thức P=60x+80y đạt GTLN tại (x;y)là tọa độ một trong các đỉnh của ngũ giác.

Thay lần lượt tọa độ các điểm O,B,C,D,E vào biểu thức P(x;y)ta được:

P(0;0)=0;P(0;6)=480;P(4;5)=640;P(6;3)=600;P(7;0)=420(0;0)=0;(0;6)=480;(4;5)=640;(6;3)=600;(7;0)=420
 

  • BÀI10  đáp án B

Gọi x;ylần lượt là số xe loại A vàB. Khi đó số tiền cần bỏ ra để thuê xe là f(x;y)=4x+3y

Với x xe loại A và y xe loại B sẽ chở được 20x+10y người và 0,6x+1,5y tấn hàng. Do đó ta có hệ bất phương trình:

 

  20x+10y≥140                           2x+y≥14
 ,6x+1,5y≥                         ⇔      2x+5y≥30
  0≤x≤10                                       0≤x≤10
  0≤y≤9                                         ​0≤y≤9    

 

Bài toán trở thành tìm giá trị nhỏ nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (*). Miền nghiệm của hệ bất phương trình (*) là tam giác ABCD (kể cả biên).

Hàm số f(x;y))sẽ đạt giá trị nhỏ nhất trên miền nghiệm của hệ bất phương trình (*) khi (x;y)là toạ độ của một trong các đỉnh A(5;4),B(10;2),C(10;9),D(5/2;9)

 

Ta thấy f(5;4) là giá trị lớn nhất của hàm số f(x;y)�(�;�) trên miền nghiệm của hệ (*). Như vậy để chi phí vận chuyển thấp nhất cần thuê 5 xe loại A và 4 xe loạiB





 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×