Theo đề bài, số tranh của lớp 4A vẽ được bằng 1/4 tổng số tranh. Vậy số tranh của lớp 4A vẽ được là: (1/4) * 120 = 30 bức tranh.
Đặt x là số tranh của lớp 4B vẽ được và y là số tranh của lớp 4C vẽ được.
- Số tranh lớp 4A + 4B + 4C = 120
=> 30 + x + y = 120
=> x + y = 90 ...(1)
- Khi chuyển 5 bức tranh của lớp 4B cho lớp 4C thì: số tranh của 4B còn lại là x - 5 và số tranh của 4C tăng lên là y + 5.
Theo đề bài:
(1/7)(x - 5) = (1/11)(y + 5)
Mở rộng hai vế:
11(x - 5) = 7(y + 5)
=> 11x - 55 = 7y + 35
=> 11x - 7y = 90 ...(2)
Từ (1) và (2) chúng ta có hệ phương trình:
(x + y = 90)
(11x - 7y = 90)
Giải hệ trên, chúng ta thu được:
Nhân phương trình (1) với 11 ta có:
11x + 11y = 990 ...(3)
Trừ (3) cho (2) ta được:
18y = 900
y = 50
Đặt giá trị y vào phương trình (1) ta thu được:
x + 50 = 90
x = 40
Vậy, lúc đầu lớp 4B vẽ được 40 bức tranh và lớp 4C vẽ được 50 bức tranh.