Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, Xét ΔHAE và ΔFCG
Có : HAEˆ=FCGˆ ( 2 góc đối của hình bình hành )
AE = GC ( theo gt )
AH = FC ( Vì AD = BC mà AE = GC ,theo gt )
ΔHAE = ΔFCG ( c.g.c )
HE = GF ( 2 cạnh tương ứng ) [1]
Xét ΔHDG và ΔFBE
Có : HDGˆ=FBEˆ ( 2 góc đối của hình bình hành )
HD = BF
DG = BE ( Vì AB = DC mà HD = BF ,theo gt )
ΔHDG = ΔFBE ( c.g.c )
HG = EF ( 2 cạnh tương ứng ) [2]
Từ [1] và [2] EFGH là hình bình hành ( vì có các cạnh đối bằng nhau )
b, Có ABCD là hình bình hành AC cắt BD ở trung điểm mỗi đường [3]
Lại có EFGH cũng là hình bình hành EG cắt HF tại trung điểm mỗi đường[4]
Mà HBFD là hình bình hành ( vì HD // BF và HD = BF , theo gt )
HF cắt BD tại trung điểm mỗi đường [5]
Từ [3] ; [4] và [5] AC,BD,EG,FH đồng qui tại một điểm
Đ/s a, Tứ giác EFGH là hình bình hành
b) Các đường thẳng AC, BD , EG, FH đồng quy.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |