P = a+4 căn a+4 4-a ----------------- + -------------- ( với a ⩾0, a≠4) căn a +2 2- căn a
0 Xem trả lời
32 Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the expression, we can rationalize the denominators of the fractions. First, let's rationalize the denominator of the first fraction: Multiply the numerator and denominator by the conjugate of the denominator, which is √(a+2): ((a+4) * √(a+2)) / ((√(a+2)) * (√(a+2))) = (a+4)√(a+2) / (a+2) Next, let's rationalize the denominator of the second fraction: Multiply the numerator and denominator by the conjugate of the denominator, which is 2+√a: ((4-a) * (2+√a)) / ((2+√a) * (2+√a)) = (4-a)(2+√a) / (2+√a)^2 = (4-a)(2+√a) / (4+2√a+2√a+a) = (4-a)(2+√a) / (a+4+4√a) Now, the expression becomes: [(a+4)√(a+2) / (a+2)] + [(4-a)(2+√a) / (a+4+4√a)] To simplify further, we can combine the fractions by finding a common denominator: [(a+4)√(a+2)(a+4+4√a) + (4-a)(2+√a)(a+2)] / [(a+2)(a+4+4√a)] Expanding and simplifying the numerator: [(a+4)(a+4+4√a)√(a+2) + (4-a)(2+√a)(a+2)] / [(a+2)(a+4+4√a)] [(a^2+8a+16+16√a(a+1))√(a+2) + (8+2√a-2a-√a^2)(a+2)] / [(a+2)(a+4+4√a)] [(a^2+8a+16+16√a(a+1))√(a+2) + (8+2√a-2a-a)(a+2)] / [(a+2)(a+4+4√a)] [(a^2+8a+16+16√a(a+1))√(a+2) + (8+√a-3a)(a+2)] / [(a+2)(a+4+4√a)] [(a^2+8a+16+16√a(a+1))√(a+2) + (8+√a-3a)(a+2)] / [(a+2)(a+4+4√a)] Simplifying the denominator: (a+2)(a+4+4√a) = a^2+6a+8+4a√a+4√a+16 = a^2+10a+24+4a√a Finally, the expression simplifies to: [(a^2+8a+16+16√a(a+1))√(a+2) + (8+√a-3a)(a+2)] / (a^2+10a+24+4a√a)